Flash Loan Attack Is More Than Just Price Oracle Manipulation: A Comprehensive
Empirical Study

Cuifeng Gao'2, Jiajun Ye!?, Wenzhang Yang®*, and Yinxing Xue

1,2,3

1School of Computer Science and Technology, University of Science and Technology of China, Hefei, Anhui, China
2Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, China
3Tnstitute of Al for Industries, Nanjing, Jiangsu, China
2cf20225162 @mail.ustc.edu.cn, jun9908 @mail.ustc.edu.cn, yywwzz@mail.ustc.edu.cn, yxxue@ustc.edu.cn
*corresponding author

Abstract—The rapid growth of the decentralized finance (DeFi)
ecosystem has given rise to flash loan, a type of uncollateralized
loan service that enables users to easily borrow substantial
amounts of funds. However, this has prompted attackers to
conduct malicious arbitrage within DeFi protocols, known as
notorious flash loan attacks, resulting in significant asset losses.
Existing works primarily focus on investigating price oracle
manipulation, a common tactic in flash loan attacks, but lack
a comprehensive understanding regarding the entire process of
flash loan attacks and the diverse range of attack methods. In
this paper, we empirically study 155 real-world flash loan attack
incidents, representing the largest-scale study to date. We first
categorize these incidents into five types based on their root
causes and compile statistics on their distribution, then elucidate
the vulnerable code and finance mechanisms exploited in each
category. Subsequently, we identify the symptoms of code-
based vulnerabilities and summarize the abstract attack models
for the entire process. Finally, we evaluate the effectiveness
of state-of-the-art off-chain tools in detecting code-based
vulnerabilities within their scope of capabilities. We find that
SLITHER performs the best in detecting 22% of temporal
reentrancy vulnerabilities, and DEFITAINTER has a 52% false
negative rate in detecting price oracle manipulation, mainly
attributed to three limitations.

Keywords—smart contract; flash loan attack; security

1. INTRODUCTION

Smart contracts are self-executing programs on the blockchain.
It is initially enabled in the Ethereum blockchain platform
to be implemented using a Turing-complete programming
language (e.g., Solidity [1]). This led to the emergence
of thousands of decentralized finance (DeFi) protocols and
applications that gained significant popularity [2], such as
flash loan, decentralized exchange (DEX), lending and yield
farming. However, as reported by the renowned blockchain
security company SlowMist Technology [3], flash loan attacks
(FLAs) rank as the third most common type based on the
number of occurrences (123 incidents up to 2023). An in-depth
understanding of flash loan attacks is essential to guarantee
the security of DeFi protocols and maintain social stability.

In recent years, several studies have gradually emerged investi-
gating topics related to flash loan attacks and associated means

of exploitation, such as price oracle manipulation. In 2021, the
work [4] first formulated flash loan attacks as an optimization
problem to effectively maximize attack profits. DEFIRANGER
[5] and PROMUTATOR [6] detected price oracle manipulation
based on historical transaction information rather than contract
code, using rule-based static approaches and mutation-based
dynamic approaches, respectively. In 2023, DEFITAINTER [7]
employed a taint analysis technique to detect price oracle
manipulation at the bytecode level. The empirical study [8]
summarized three transaction patterns of flash loan attacks
based on 22 real-world incidents associated with price oracle
manipulation. In 2024, FLASHSYN [9] synthesized the flash
loan attack vector to maximize profits using mathematical
approximation, making it more general than the work [4].
OVER [10] utilized symbolic execution approaches to assist
developer in defending against unexpected price deviations.
However, there are three critical limitations in existing work. (1)
Existing work is narrowly confined to price oracle manipulation
and specific victim DeFi protocols (e.g., lending protocols [11]),
leaving a significant gap in the comprehensive understanding of
flash loan attacks. (2) Existing work is limited to a small scope
of incidents of flash loan attacks (no more than 30 real-world
incidents) , leading to incomplete coverage of case studies
and a lack of in-depth analysis. (3) Considering the multitude
of existing smart contract automatic analysis tools [12] [13]
[14], there is a research gap in evaluating their effectiveness
in emerging flash loan attacks.

Therefore, to gain a comprehensive understanding of flash loan
attacks, we empirically studied a wide range of real-world
flash loan attack incidents and are committed to answer the
following questions. (1) What are the root causes, categories,
and distributions of flash loan attacks? (2) What are the code
symptoms and abstract attack model of flash loan attacks? (3)
How effective are existing analysis tools in detecting different
types of flash loan attacks?

In this paper, we first gather 155 real-world incidents of
flash loan attacks from the Web3rekt [15] website and the
DeFiHackLabs [16] GitHub repository to construct our dataset.
All incidents are cross-verified by third-party proof (e.g.,
online blog articles, block transaction records). This dataset
surpasses the scale of all current work in this field. Then,
these incidents are classified into five categories. We provide
comprehensive explanations for the root causes and distribu-

tions of each category. We find that 74% of the incidents
exploited code-based vulnerabilities, resulting in 98% of the
asset losses. Furthermore, we present the symptoms of code-
based vulnerabilities exploited by flash loan attacks, and the
abstract attack models of entire attack process to facilitate future
research on automatic analysis tools. Finally, we evaluate the
effectiveness of state-of-the-art security tools (e.g., SLITHER

[12], MYTHRIL [13] and MANTICORE [14]) in detecting

reentrancy vulnerabilities [17] category. Moreover, we evaluate

DEFITAINTER in detecting price oracle manipulation category.

Given its 48% accuracy on 60 incidents, we critically examine

its limitations and explore avenues for future improvement.

Specifically, we categorize its potential limitations into three

main aspects, each supported by representative examples.

To sum up, we make the following contributions.

« We collect 155 incidents of flash loan attacks, establishing the
most comprehensive and largest dataset [18] on the subject
within existing work.

e We conduct a thorough empirical study on all publicly
available real-world incidents, elucidating their categories,
root causes, and distributions.

« We investigate vulnerable code symptoms and abstract attack
models across different categories of flash loan attacks.
Furthermore, we evaluate the effectiveness of existing tools
in detecting code-based vulnerabilities.

2. BACKGROUND

In this section, we provide background knowledge related to
DeFi protocols and flash loan attacks.

2.1 DeFi Protocols

Decentralized Finance (DeFi) is a novel financial paradigm
powered by smart contracts, which encompasses a variety of
financial services. DeFi protocols implement their functions
by combining multiple smart contracts, each responsible for
specific tasks and operations, and interacting through mutual
calls. In general, the critical DeFi protocols involved in
flash loan attacks contain flash loan services [19], victimized
protocols (e.g., Decentralized Exchange (DEX) [20], liquidity
pools (LP) [21], Lending [11], and Yield Farming [22]), and
exploitable financial mechanisms (e.g., Deflationary Token [23]
and Price Oracle [24)).

2.2 Flash Loan Attack
We define the flash loan attack in the broadest sense as follows.

Definition 2.1. A flash loan attack is a type of exploit conducted
within a single blockchain transaction, where the attacker
borrows a substantial amount of funds from a flash loan
protocol, manipulates markets or exploits code vulnerabilities
to obtain illicit profits, and subsequently repays the loan.

The threat model of flash loan attacks is illustrated in Figure 1.
In a single transaction of a flash loan attack, three primary
roles implemented through smart contracts are involved: the
attacker, the flash loan provider, and the victim protocols (e.g.,
DEXs, lending, and yield farming). The attack process consists
of four key steps: (D The attacker borrows a large sum from

S}
fol

Repay

E Flash Loan Provider

—> Fund Flow (__]Smart Contract |__ !

Victim Protocols

A Transaction
Figure 1: The threat model of flash loan attacks.

the flash loan provider.) The attacker uses these funds to
exploit market or code vulnerabilities to arbitrage against the
victim protocols. (3) The attacker secures substantial profits. @)
The attacker repays the loan. Note that the second step involves
varying complex processes depending on the target contracts
and the vulnerabilities. We are committed to illustrating how
attackers conduct attack processes and the reasons behind their
success in this work.

2.3 Related Work

Recently, flash loan attacks have captured the attention of the
academia due to significant security threats. To gain an in-depth
understanding of flash loan attacks, LEISHEN [8] conducts
an empirical study based on 22 real-world flash loan attack
incidents associated with price oracle manipulation, but this
work simply summarizes three transaction patterns of attacks
without delving into their underlying causes.

Furthermore, some existing studies are respectively related to
attack [4], [9], detection [5], [6], [7], and defense against flash
loan attacks [10]. Specifically, to maximize profit via flash loan
attacks, the work [4] quantitatively analyzed the profit mecha-
nisms in two case studies of flash loan attacks and proposed
more optimal attack strategies for these cases. FLASHSYN [9]
employs a mathematical approximation approach to synthesize
the flash loan attack vector that yields the highest gain from
the vulnerable contract. To guarantee the security of DeFi
protocols, DEFIRANGER [5] analyzes historical transaction
data and employs pattern matching to detect whether a DeFi
protocol has experienced price oracle manipulation attacks.
PROMUTATOR simulates price oracle manipulation attacks by
mutating the oracle’s output. It compares the behavior of the
DeFi protocol under normal conditions with its behavior under
price oracle manipulation to detect attacks. DEFITAINTER [7]
employs taint analysis technique on the bytecode to detect
price oracle manipulation in smart contracts. To mitigate price
deviations potentially caused by flash loan attacks, OVER [10]
provides a symbolic analysis framework that helps adjust price
fluctuation parameters in lending protocols.

To the best of our knowledge, there is currently no com-
prehensive and thorough study on flash loan attacks. Hence,
investigating the scope, types, and root causes of flash loan
attacks is pivotal for aiding researchers in comprehensively
understanding these attacks and ensuring the security of DeFi
protocols. Furthermore, it is essential to assess the effectiveness
of existing security tools in countering emerging flash loan
attacks to promote further research.

TABLE I: Dataset Collection.

Method Description Number
Collection From the Web3Rekt website. 189
From the DefiHackLabs repository. 48
Deduplication ~ Compare the addresses of the victim con- 21
tracts.
Lack of source code for the attacked con- 15
Exclusion tract.
) Insufficient or non-existent online reports to 46
confirm the occurrence of flash loan attacks.
Total 155

3. RESEARCH QUESTION AND DATASET COLLECTION

In this section, we first introduce the key research questions of
this study. Then, the method of dataset collection is presented.

3.1 Research Question

In this work, we are dedicated to exploring the following three
primary research questions.

« RQI1: What are the root causes, categories, and distributions
of flash loan attacks?

o RQ2: What are the code symptoms and abstract attack model
of flash loan attacks?

« RQ3: How effective are existing analysis tools in detecting
different types of flash loan attacks?

In RQI1, we first categorize flash loan attacks based on
their different root causes. Then, for each type of flash loan
attack, we further elaborate on explaining its root cause and
distribution. In RQ2, we depict the symptoms of vulnerable
code in victim contracts and outline the abstract attack models
to facilitate the design of analysis and testing tools. In RQ3,
we evaluate the effectiveness of the state-of-the-art tools in
detecting flash loan attacks.

3.2 Dataset Collection

Our dataset is constructed by collecting real-world flash loan
attack incidents from two distinct sources: Web3Rekt [15]
and DeFiHackLabs [16]. (1) Web3Rekt has been dedicated to
educating and raising awareness of various blockchain events
since 2012. It maintains a repository of blockchain security
incidents, helping blockchain participants better understand and
analyze the risks associated with cryptocurrencies and various
blockchain projects. (2) DeFihacklabs is a GitHub repository
with 4.6K stars, serving as a platform dedicated to blockchain
security education. It reproduces DeFi hack incidents using
the popular smart contract development toolchain FOUNDRY
[25], which provides the proof of concepts showcasing past
flash loan attack incidents.

Table I presents an overview of the dataset collection method.
Specifically, we first utilize the filtering function on the

Web3Rekt website to screen all incidents recorded in Web3Rekt.

We select “flash loan” as the attack method to filter incidents,
resulting in a total of 189 incidents. Similarly, in DefiHackLabs,
incidents are labeled with their root causes. We extract incidents
tagged with phrases related to “flash loan”, resulting in a total
of 48 cases. Both collections are up to April 15, 2024.

Then, after performing a deduplication by comparing the
address of the victim contracts, we eliminated 21 incidents
reported redundantly by two sources and ended up with a total
of 216 incidents. Lastly, we exclude 15 attack incidents that
lack source code for the attacked contract, which prevents the
manual code audit. In addition, we exclude 46 incidents due
to insufficient or non-existent online reports, as the root causes
cannot be confirmed without the manual cross-verification of
the authenticity of flash loan attacks. In the end, we retained
155 incidents in our dataset.

Each incident is cross-verified for authenticity by third-party
proof (e.g., project issues, online blog articles, block transaction
records, etc.), providing detailed analysis of the flash loan
attacks, and by two authors with at least three years of smart
contract research experience. In cases where disagreement
arises, the incident is forwarded to the third author for
evaluation of the fundamental cause and classification. The
manual audit process lasted three months in total. We strive to
provide uniform resource locations (URLs) associated with
flash loan attack incidents to ensure traceability for each
incident. Detailed information about the dataset is publicly
available at the GitHub repository [18].

4. RQI1: THE ROOT CAUSES, CATEGORIES, AND DISTRIBU-
TIONS OF FLAS

In this section, we categorize the 155 flash loan attack incidents
according to their root causes and present their distributions.

4.1 Root Causes and Categorization

We adopt the open card sorting [26] method, a widely used
approach for classification tasks [27] [28], to organize all 155
flash loan attack incidents into five categories: (C1) Reentrancy
Vulnerabilities, (C2) Code Logic Vulnerabilities, (C3) Pump
and Arbitrage, (C4) Currency Deflation Mechanism, and (C5)
Price Oracle Manipulation.

4.1.1 (C1) Reentrancy Vulnerabilities.

The root cause of this type of flash loan attack lies in the
presence of reentrancy vulnerabilities [17] in victim contracts.
In this type of flash loan attacks, exploiting reentrancy vulnera-
bilities requires an upfront cost, such as making an initial
deposit and subsequently receiving corresponding rewards,
which is a significant characteristic that distinguishes it from
traditional reentrancy vulnerabilities [29]. In general, the higher
the upfront cost, the greater the profit from a single exploitation.
Consequently, attackers commonly use flash loan services to
obtain significant initial capital, enabling rapid and substantial
profits. This type of attack can be prevented by utilizing state-
of-the-art automated detection tools (e.g., SLITHER [12] and
MYTHRIL [13]) or conducting manual audits to ensure that
contracts are free from reentrancy vulnerabilities.

4.1.2 (C2) Code Logic Vulnerabilities.

The root causes of this type of flash loan attack are typically
project-specific, primarily stemming from logic-related flaws
that developers do not thoroughly consider, which are beyond

— xXxXy=k

Alya = yb)

Token T
=
N
]
s

@Pump

Alxc = Xp)
Bxo,yor i ¢ Cixe,yo)
T

AlXc=Xq)
@Arbitrage

Token Ty
Figure 2: The graph of the constant product formula utilized
by automated market maker.

the scope of existing automatic tools. Building on the broad
framework established by the work [30] for understanding code
logic vulnerabilities in smart contracts, this type of flash loan
attack can be further categorized into four subtypes: accounting
errors [31] [32], permission escalation [33], state inconsistency
issues [30], and contract implementation-specific bugs [34].
In particular, accounting errors typically require attackers to
possess significant funds to trigger, necessitating the use of flash
loans. Moreover, attackers cannot profit from DeFi protocols by
the other three subtypes of attacks (i.e., permission escalation,
state inconsistency, and contract implementation-specific bugs)
without incurring costs. Hence, attackers need to use flash
loans to obtain substantial capital to maximize their profits.
This type of attack can be prevented by performing a manual
audit of the code logic before deploying the contract to ensure
that there are no logical flaws.

4.1.3 (C3) Pump and Arbitrage.

The root cause of pump and arbitrage is the price slippage
inherent in DEXs based on the automated market maker (AMM)
mechanism. The AMM mechanism relies on the constant
product formula x X y = k, where x and y denote the quantities
of two different tokens in the LP and k is a constant. This
means that the ratio of tokens changes as the exchange occurs,
but their product remains unchanged, maintaining liquidity.

Figure 2 illustrates the graph of the constant product formula
utilized by AMMs. Assume that a DEX facilitates the exchange
of Token Ty and Token Tp. At a specific moment, say point
A(Zq,ya), the LP in the DEX contains z, tokens of Tj and
yq tokens of Tp, Then, the attacker conducts the following
steps: (D Pump: purchasing A(y, — y) tokens of Ty with
A(zp — x,) tokens of Ty borrowed from flash loan in the
liquidity pool, causing price slippage. (2) Pump: prompting the
victim to purchase A(y, — y.) tokens of T with A(x. —)
tokens of Tj in the same liquidity pool, further exacerbating
the slippage. @ Arbitrage: selling A(y, — yp) tokens of Ty
purchased in the fist step, equivalent to A(ys—y.), in exchange
for A(z.—x4) tokens of Ty from the liquidity pool. This action
capitalizes on the price slippage, as A(z. —xq) > A(xp — 24),
resulting in profit. As a result, the victim encounters a higher
price of Tg at point D than at point B. This results in the
sale of A(y, — y.) tokens of Tp purchased in the second step,
yielding only A(xz4 — x,) tokens of Ty. This amount is less
than the cost A(x. — xp) tokens of T in the second step.

TABLE II: A simulated flash loan attack demonstration caused
by the currency deflation mechanism.

Attacker’s Assets Liquidity Pool’s Assets ‘

Step Tp? | Tt | Tp° | 75
(1) Initiate 0 0 | 1,000 100
(2) Borrow T 0 1,000 100
(3) Deposit | -9,990-999(burn) 0 | 1,000 [+9,9901 100
. £-9,990-999(burn)+9,990 1,000-999(burn)
(&) Withdraw | _ 909 burn) 0 1 149,990-9.9901¢= 1 | 100
. x-999(burn)-1-0.1(burn) _
(5) Exchange ~ 2-1000.1 50 1+1 =2 50

: T denotes a type of deflationary token with 10% deflation rate.
. T denotes a type of general token.
[1 denotes the assets are not confirmed to reserve.

For example, in the incident of the Wault Finance attack [35],
the victim, Wault Finance, is a yield farming protocol that
offers staking and redemption services for tokens BUSD and
WUSD. However, to market its own issued token WEX, Wault
automatically exchanges 10% of the BUSD tokens staked by
users in WEX tokens from the LP and exchanges 90% of WUSD
back into BUSD and the remaining 10% into WEX to return to
users utilizing the redemption service. Consequently, attackers
can exploit this by preemptively pumping WEX tokens (7})
and then arbitraging BUSD tokens (7p) as described in the
attack process above. The attack process can be abstracted
into the following sequence of function calls, where > denotes
the order of function calls, LP.swap() represents the token
exchange function in an LP, and Victim.stake() represents
the token stake function in a target contract.

‘ LP.swap() = Victim.stake() = LP.swap() = Attack (C3) ‘

In this type of flash loan attacks, attackers utilize flash loan
services to create significant price slippage, ensuring that the
profit exceeds the cost. Victims are typically DeFi protocols
that use LPs for token exchange, such as DEX, lending, and
yield farming. This type of attack can be prevented by detecting
if an impending transaction is taking place under conditions
of price slippage and examining whether the LP is already
experiencing price deviation.

4.1.4 (C4) Currency Deflation Mechanism.

The root cause of this type of flash loan attack stems from
the token burning mechanisms of the deflationary token (DT)
[23]. Therefore, if an LP permits users to withdraw previously
deposited DTs at no cost, it must bear the loss associated with
returning DTs to users. This can be exploited by attackers to
cause DTs to evaporate from the LP, resulting in profit.

As shown in Table II, we provide a simulated attack demon-
stration caused by the currency deflation mechanism. Given a
deflationary token T, with 10% deflation rate, and a liquidity
pool provides the exchange of 7y and a general token 7. The
process of the attack primarily unfolds as follows: (1) The LP is
initially set up with 1000 units of token 7"_ID and 100 units of
token T_G. The attacker starts with no assets. (2) The attacker
borrows a large sum (x) of T from a flash loan service. (3)
The attacker deposits a premeditated amount (9, 990) of 71 into
the LP. (4) The attacker requests to withdraw the previously
deposited T, causing the LP to burn an additional amount

(999) of Tpy at a certain deflation rate (10%) and the amount of
Tp reserved in the LP decreases sharply (1 T remains). After
affecting the LP, the attacker deposits only 1 of Tp. (5) Finally,
the attacker can exchange T at a low price. Specifically, before
the attack, the attacker must pay 1,100 (1,000 + 1,000 * 10%)
Tp to exchange for 50 T, while after the attack, the attacker
only pays 1,000.1 Tp to exchange for 50 T5.

For example, in the incident of the BGLD attack [36], the
BGLD token is a deflationary token and the victim is the LP
that supports the exchange of BGLD tokens. Firstly, the attacker
transfers BGLD tokens to the LP. The attacker then invokes
the skim function to reverse the transaction of BGLD tokens,
causing the LP to need to transfer the BGLD tokens to the
attacker. Due to token burning mechanisms, the original tokens
in the LP have unexpected evaporation. Subsequently, the
attacker invokes the swap function to extract profits from
the liquidity pool. The attack process can be abstracted into
the following sequence of function calls, where > denotes
the order of function calls, Token.transfer() represents the
transfer function of a deflationary token, L P.skim() represents
the reversal function of the token in an LP, and LP.swap()
represents the exchange function of the token in an LP.

Token.transfer() = LP.skim() = LP.swap() = Attack (C4) ‘

In this type of flash loan attacks, flash loan services are utilized
to acquire the necessary funds to reduce the 7y tokens in the
LP to an expected minimal value. As seen in the example
above, when the Ty tokens in the LP decrease, the attacker
also loses an equivalent amount of 7y tokens. Therefore, the
attacker must ensure that they possess a sufficient quantity
of Tp tokens to execute the attack. To prevent this type of
flash loan attack, LPs should carefully consider supporting
deflationary token exchange, and deflationary token designers
should consider avoiding imposing fees on LPs.

4.1.5 (CS5) Price Oracle Manipulation.

The root cause of this type of flash loan attack stems
from victim protocols using price information provided by
a manipulable price oracle as the basis for their financial
decisions. Incorrect prices led to flawed financial decisions,
which in turn caused losses for victims.

For example, in the Nereus Finance incident [37], the victim,
Nereus Finance, is a lending DeFi protocol that offers an
investment service and a lending service. Users can invest by
collateralizing assets in a DeFi protocol and may also borrow
other tokens using these collateralized assets to engage in other
investment activities. To create significant price deviations,
attackers must secure substantial funds through flash loans.
The DeFi protocols (e.g., DEX, lending, and yield farming)
that rely on price oracles are often susceptible contracts of this
type. The price oracle could be manipulated in various ways
depending on their use case, and further details and abstract
attack model could be found in § 5-C.

This type of attack can be prevented by the following three
aspects: (1) Developers must perform manual audits or use
automatic tools [7] to assess whether their price calculation

5N (C1) Reentrancy Vulnerabilities
(C2) Code Logic Vulnerabilities
[ZZ2 (C3) Pump and Arbitrage

7.4x107%

(C4) Currency Deflation Mechanism
[T (C5) Price Oracle Manipulation

t (53%)

(a) Number of incidents. (b) Assets losses (USD).

Figure 3: The categories and distributions of FLAs.

TABLE III: Distribution of subcategories of code logic vulner-
abilities (C3).

Categories Number Assets lost
Accounting Errors 13 33%) 4.4 x 107 (12%)
Permission Escalation 12 31%) 1.0 x 10® (28%)
State Inconsistency Issues 9 (23%) 1.4 x 107 (4%)

Contract Implementation Specific Bugs

5 (13%) BFEREEED)

foundations are susceptible to manipulation. (2) DeFi protocols
can implement better oracle paradigms, such as price oracle
networks [38]. (3) DeFi protocols can adopt weighted average
prices, such as time-weighted average prices [39] or volume-
weighted average prices [40] instead of prices at specific mo-
ments, because the manipulated prices can only be maintained
for a brief period.

4.2 Distributions in Different Types of Flash loan Attacks

Figure 3 shows the number of incidents in our dataset
for categories C1 to C5 and the corresponding real-world
asset losses they incurred. Among them, the price oracle
manipulation category (C5) has the most incidents, which
are 66 (43%) and represents the largest share (53%) of total
asset losses (507,136,170 USD). Despite this, the number of
incidents and asset losses for other categories together still
account for about half, indicating that a deeper understanding
of attack principles beyond price oracle manipulation is crucial
for researching flash loan attacks.

Furthermore, the number of incidents (39) in the code logic
vulnerabilities category (C2) and the resulting asset losses
(359,266,837 USD) are second only to those in the price oracle
manipulation category (CS5). Notably, the average loss per C2
incident is greater than that of C5, indicating that C2 attacks
have a more severe impact. Therefore, as shown in Table III, we
proceeded to further analyze the distribution of subcategories
within C2. Among them, the number of accounting errors
13 (33%) is the largest, because this vulnerability typically
requires that attackers possess significant funds to be exploited,
causing the use of flash loans. Moreover, there are 12 (31%)
incidents of permission escalation and 9 (23%) incidents of
state inconsistency issues. In these incidents, the higher the cost
of a single attack, the greater the potential arbitrage. Therefore,
attackers often use flash loans to acquire large amounts of
capital rapidly and without upfront cost, enabling rapid and
substantial arbitrage. In addition, we find 5 (13%) incidents

1

2
3

N A

function depositFor (address token, uint _amount,address

user) public {

uint256 _pool = balance();

IERC20 (token) .safeTransferFrom(msg.sender, address (this
), _amount);

uint256 _after = balance();

_amount = _after.sub(_pool);

shares (_amount .mul (totalSupply())) .div (_pool);

_mint (user, shares); }

Figure 4: An example of reentrancy vulnerability (C1).

related to contract implementation specific bugs. Despite being
the fewest in number, they result in the highest asset losses
(56%), suggesting that vulnerable business logic are more
detrimental than code bugs.

Answer to RQ1: Flash loan attacks can be categorized
into five types (C1-C5) according to their root causes. Cl1,
C2, and C5 exploit code vulnerabilities, representing 74%
incidents and causing 98% asset losses, while C3 and C4
exploit finance mechanisms vulnerabilities, resulting in
minor asset losses.

5. (RQ2) THE CODE SYMPTOMS AND ABSTRACT ATTACK
MODELS OF FLAS

In this section, we use real-world examples to illustrate the
symptoms present in code-based vulnerabilities exploited by
flash loan attacks (C1, C2, and C5). Furthermore, we outline
the abstract attack model to facilitate the development of future
automatic analysis tools and detection oracles.

5.1 Reentrancy Vulnerabilities (C1)
5.1.1 Real-World Code Example

In the Grim Finance attack incident [41], the reentrancy vulner-
ability resides within a single function named depositFor,
as shown in Figure 4. This function allows any user to deposit
funds into Grim Finance by an external call (line 3), and in
return, Grim Finance mints its own tokens GBF' to users as
collateral certificates by modifying the users’ balances (line
7). However, changing storage states after an external call
aligns with the classic symptom of a reentrancy vulnerability,
as identified by SWC [42] and existing works [12] [43]
[44]. In particular, this function lacks address authentication,
enabling the caller to set any target address for the external
call. Consequently, the attacker designed a malicious IERC20
contract, where the safeTransferFrom function (line 3) will
call this function back. The attacker can then deposit funds
once, but receive multiple shares. Specifically, in this incident,
the attacker borrowed 30 BT'C' and 937,830 W ETM from
the flash loan, and then exchanged them in the LP for 0.0476
SPIRIT—LP as the funds deposited in Grim Finance. Finally,
the attacker re-entered the depositFor function eight times
and gained a profit of 300 GBF' tokens.

5.1.2 Abstract Attack Model.

Given a flash loan provider, a victim protocol with a reentrancy
vulnerability, the attack process comprises three steps: () The
attacker borrows the necessary funds for the attack through a

1

2

NN kW

function donateToReserves (uint subAccountId, uint amount)
external nonReentrant { ...
uint origBalance = assetStorage.users[accountw].balance

;

uint newBalance;

require (origBalance >= amount);

unchecked { newBalance = origBalance - amount; }

assetStorage.users[account] .balance = encodeAmount (
newBalance); ... }

Figure 5: An example of code logic vulnerability (C2).

flash loan. (@) The attacker exploits the reentrancy vulnerability
to make a profit. @) The attacker repays the flash loan.

5.2 Code Logic Vulnerabilities (C2)
5.2.1 Real-World Code Example

In the Euler Finance attack incident [34], the code logic
vulnerabilities reside within the function donateToReserves,
as shown in Figure 5. This function allows users to donate
their assets to Euler Finance and reduces their balances by
the corresponding amount (line 6). However, it fails to assess
whether the donation amount is reasonable. As a result, the
attacker uses an account in a borrowed state to call the
function donateToReserves, transforming a normal account
into an under-collateralized account. Subsequently, the attacker
liquidates the under-collateralized account to obtain liquidation
profits, leaving Euler Finance with bad debt.

The attacker built two contracts, C; and Cs, to attack. It
first borrowed 300 DAT through a flash loan and utilized C
to apply for leverage in Euler Finance as much as possible.
As a result, the contract C'; held 410M DAT in assets and
390M DAT in liabilities. Subsequently, the attacker called the
donateToReserves function, donating 100M DATI, which
maliciously triggered liquidation. Ultimately, the attacker used
contract Cs to liquidate contract C', gaining 38M DAT.

5.2.2 Abstract Attack Model.

Given a flash loan provider, a victim protocol with a code
logic vulnerability, the attack process comprises the following
three steps: () The attacker borrows the necessary funds for
the attack through a flash loan. @) The attacker exploits the
code logic vulnerability to gain profit. 3) The attacker repays
the flash loan.

5.3 Price Oracle Manipulation (C5)

By analyzing 66 price oracle manipulation incidents in our
dataset, we identify that the victim DeFi protocols mainly fall
into three types: DEX, lending, and yield farming. Among
these, DEXs and yield farming protocols share a similar code
logic in utilizing price oracles, which differs from that of
lending protocols. Consequently, we categorize the former and
the latter into two distinct subcategories: (A) collateralized
lending and (B) collateralized redemption, which encompass
20 (30.3%) and 46 (69.7%) incidents, respectively.

However, previous papers [7] [10] [30] present examples from
only one type, with a primary focus on the code relevant
to price oracle utility. Thus, in the following sections, we
analyze the symptoms of these two subcategories individually,

| contract Attacker { | contract Provider { Contract Attacker Contract Provider
2 function _beforeAttack() { 2 function flashlLoan (address receiver, address function init() function flashLoan()
3 e token, uint256 amount, bytes memory oUSDC aUSDC
4 Victim.deposit (amount) ; params) { _>®
5 . } 3 transferFlashloanAsset (token, _receiver, e
6 function _afterAttack() { amount) ; e
7 e 4 IFlashLoanReceiver (_receiver). @5
8 token.transferFrom (address (executeOperation (token, amount, fee, o-51M
this), address (Provider), params) ; function attack() R
0 an;ount) ; 5 handleFlashLoanRepayment (); } } S Usoe J'T _°
. ' a+25.5K
. H usbc
10 function _attack(){ (b) Flashloan Provider. ; @
11 Victim.borrow (address, amount) 1M usbe :
i ! 1 contract Victim {)
12 funct:.?n borrowFlashloan f{ 2 function deposit (address to, uint256 share); 5ov46nc E Contract Vietim
13 Provider.flashLoan (address (3 function borrow (address to, uint256 amount) T34 AYAX. ' . .
this) address (token) 3 ! , @_e- ' function deposit()
! ! public { = Bie
14 } amount,);// step 1 4 _borrow(to, uint256); U E ¥ NXUSD,
15 function executeOperation (5 requ:.i;e(t_(l)s)s)o}vent (msg.sender, PriceOracle ‘—'— 4 —-E- @
address token, uint256 6 } } ! 506K WAVAX H
amount, uint256 fee, bytes 298K NXUSD. 1[| |function borrow()
calldata params)external L. - H B”’-:;ffs’;w
16 _beforeAttack(); //step 2 (¢) Victim Contract. soantsos | ||| 1 e
17 LiquidityPool. . SomIgusP. il Sy
swapExactTokensForTokens (1 contract PriceOracle { —-— - \ - 998K NXUSD
amountInl, amountOutMinl, 2 function get () public returns (uint256) { K USDC 5
Pathl, to, deadline); 3 uint256 usdcPrice = uint256 (USDC.
step 3 latestAnswer());
18 _attack () ; step 4 4 uint256 avaxPrice = uint256 (AVAX. Contract PriceOracle
19 LiquidityPool. latestAnswer ()); Contract LiquidityPool function get()
swapExactTokensForTokens (5 (uint1l1l2 wavaxReserve, uintll2 usdcReserve 5 2
amountIn2, amountOutMin2, ;) = LiquidityPool.getReserves(); Q
Path2, to, deadline); // 6 uint256 price = (wavaxReserve * avaxPrice S
step 5 + usdcReserve * usdcPrice x lel2) /
20 _afterAttack (); // step © uint256 (pair.totalSupply ()); [] Smart Contract Function Contract Funds
21}) 7 return le26/price; } }
(O statement —> External Call - -3 Call Return

(a) Attacker Contract.

(d) Price Oracle.

(e) Attack Process

Figure 6: A real-world example of price oracle manipulation (C5).

demonstrating the interactions between various smart contracts
and their funds flows throughout the entire attack process.

5.3.1 Real-World Code Examples

(A) Collateralized Lending (CL). The CL protocol allows
users to collateralize funds of a specific token and then apply for
a loan for multiple types of tokens. For instance, Nereus finance
[37] only accept JLP tokens as collateral, allowing users to
lend out tokens such as NXUSD, USDC, etc. It uses price oracles
to appraise the value of the collateral and determine whether
users are eligible for the loan. Hence, the price oracles are
usually called in conditional statements (e.g., i f and require)
in CL protocols, representing key information on the control
flow of the code.

Figure 6 shows a real-world example of a flash loan attack on
CL DeFi protocols and its simplified source code. Moreover,
to clearly outline how attackers utilize flash loans to attack
vulnerable contracts, Figure 6e provides the control flow graph
of attack code execution and the fund flow of the contract.
Specifically, the flash loan attack primarily comprises six steps:

Step 1.Requesting a flash loan. The attacker invokes the
borrowFlashloan function (Figure 6a, line 12) to apply for
a flash loan (Figure 6b, line 2) from the flash loan provider
(borrow 51 M USDC from Aave [45]).

Step 2. Collateralization within the victim contract. The
attacker calls the _beforeAttack function (Figure 6a, line

16) to deposit (line 4) a specific collateral token into the victim
contract (deposit 0.04533 JLP into Nereus [46]).

Step 3. Manipulating the price oracle. The attacker invokes
the swapExactTokensForTokens function (Figure 6a, line
17) to modify the quantity of tokens in the LP (Figure 6d),
resulting in an inflated valuation of collateral tokens (exchange
50.46 M USDC for 505K WAVAX in the Uniswap [47]).

Step 4. Profiting from the victim. The attacker invokes
borrow function of the victim contract (Figure 6c, line 3)
to make a profit (998 K NXUSD).

Step 5. Restoring the manipulation. The attacker again in-
vokes the swapExactTokensForTokens function (Figure 6a,
line 19) as a restoration of the manipulation of the price oracle
(exchange 506 K WAVAX into 50.43M USDC).

Step 6. Repayment of the flash loan. The attacker calls the
_afterAttack function (Figure 6a, line 20), repaying the
flash loan (51M USDC) along with fees (25.5K USDC) (line
8), and withdrawing the remaining funds (371K USDC).

(B) Collateralized Redemption (CR). CR protocols (e.g.,
DEX and yield farming) allow users to collateralize multiple
types of tokens into a LP, which then automatically transfer a
specific token issued by the CR protocol to the users. Hence,
the collateral certificate of CR protocols is a specific type of
liquidity token rather than a record in the lending protocols.
Users can redeem their staked funds using the obtained tokens.

1 function _deposit (uint256 _amount, uint256 _minShares) {

2 sharesToMint = ... Using oracle for calculate.

3 _mint (msg.sender, sharesToMint); }

4 function _withdraw (uint256 shares) {

5 shares = .. Using oracle for ulate.

6 tokenB.safeTransfer (msg.sender, shares) ; }

Figure 7: An victim example of collateralized redemption.

__

)

Manipulate
Attacker

Contract ©

Collateralize ~Restore
4
- YVY

AA

i) =®

| 4 @ || & || &8

'| Flash Loan Victim Price Liquidity | |
1 __Provider Protocols Oracle Pool
—> Fund Flow D Smart Contract :__-___-: A Transaction ****) » Data Flow

Figure 8: Price Oracle Manipulation

Since the market is volatile, the number of tokens that users
receive upon collateralization and redemption can fluctuate
and should reflect current market information. Therefore, price
oracles are used to calculate the token exchange amounts,
representing crucial information about the code data flow.

The difference between flash loan attacks against CL and CR
protocols is mainly in the process of interacting with the victim
contract (step 2 and 4) and manipulating the price oracle (step
3). Moreover, in attacks against CL protocols, the attacker can
only profit by inflating the value of the collateral. In contrast,
in attacks against CR protocols, the attacker can profit by
manipulating the price of the token issued by the CR protocol
either up or down, similar to the long and short positions in
the stock market [48]. Consequently, if the attacker intends to
manipulate the price upward (step 3) [49], the attack process
is similar to the attack against CL protocols. In Step 4, the
attacker calls the _withdraw function (line 4 in Figure 7)
to redeem funds and profit. On the contrary, if the attacker
intends to manipulate the price downwards [50], the attack
skips collateralizing funds (step 2) and proceeds directly to
manipulation (step 3). In Step 4, the attack calls the _deposit
function (line 1 in Figure 7) to profit.

5.3.2 Abstract Attack Model.

As illustrated in Figure 8, given a flash loan provider, a victim
protocol that obtains information from a price oracle that relies
on a liquidity pool, the attack process comprises the following
six steps: (D) The attacker borrows the necessary funds for
the attack through a flash loan. () The attacker collateralizes
some of the funds into the victim protocols, preparing for
the subsequent attack. 3 The attacker manipulates the price
oracle, primarily by altering the data sources used to calculate
prices, such as the quantity of a token in a liquidity pool. @
The attacker transacts with the victim protocols, profiting from
them. Q) The attacker restores the manipulation of the price
oracle. ® The attacker repays the flash loan.

TABLE IV: Results of SLITHER, MYTHRIL and MANTICORE.

Victim Coml?ller SLITHER MYTHRIL MANTICORE
Contract Version
XSURGE [54] v0.8.5 v X X
Grim Finance [41] v0.6.12 X X TIMEOUT
Paraluni [55] v0.6.12 X X TIMEOUT
Rari Protocol [56] v0.5.17 X X TIMEOUT
OUSD [57] v0.5.11 X X TIMEOUT
Cream [58] v0.6.10 X X TIMEOUT
Sturdy Finance [59] v0.7.1 v X TIMEOUT
Libertify [60] v0.8.17 X X TIMEOUT
Earning Farm [61] v0.8.3 X X X

Answer to RQ2: C1 presents a more complex context
than traditional research. C2 is project-specific and needs
a custom automated oracle for detection. C5 involves
multiple contracts, highlighting the challenge of cross-
contract analysis.

6. (RQ3) THE EVALUATION OF EXISTING ANALYZING TOOLS

In this section, we evaluate the effectiveness of state-of-the-art
analysis tools on code-based vulnerabilities. As discussed in
§ 4-A2, C2 falls outside the detection scope of existing tools,
while C3 and C4 are rooted in flaws in the market finance
mechanism. Therefore, we concentrate on the ability of analysis
tools to detect flash loan attack incidents of C1 and CS5.

6.1 Reentrancy Vulnerabilities (C1)

We evaluate the accuracy of the state-of-the-art tools that are
continuously maintained and widely adopted.

6.1.1 Experiment Setup

Evaluated Tools. According to the paper [51] that investigates
successful smart contract security tools, the top five tools are
OYENTE [52], ECHIDNA [53], SLITHER [12], MYTHRIL [13],
and MANTICORE [14]. However, since OYENTE only support
contracts for the solc-0.4.x version as reported by [29], and
ECHIDNA requires manual authoring of security properties for
detection, we exclude these two tools. Consequently, we select
a static analysis tool, SLITHER (v0.10.1), and two symbolic
execution tools, MYTHRIL (v0.23.15), MANTICORE (v0.3.7),
to detect reentrancy vulnerabilities.

Dataset. The dataset consists of 9 victim contracts collected
from the 9 flash loan attack incidents rooted in reentrancy
vulnerabilities (C1), as mentioned in § 4-B. All contracts are
programmed in Solidity version 0.5.x or higher.

Experimental Environment. All experiments are conducted
on an Ubuntu 18.04 LTS machine equipped with an Intel(R)
Xeon(R) Platinum 8160 CPU @ 2.10GHz and 376 GB of
memory.

6.1.2 Experiment Results

The detection results are depicted in Table IV. In the experiment,
timeout is set to be 2 hours for each tool to test a single
contract. Overall, SLITHER correctly reports 2 (22%) high-
impact reentrancy vulnerabilities, while MYTHRIL executes
successfully, but does not report any reentrancy vulnerabilities.

TABLE V: The results of the DEFITAINTER.

Category False Negative True Positive Total
Collateralized Lending 12 (71%) 5 (29%) 17
Collateralized Redemption 19 (44%) 24 (56%) 43
Total 31 (52%) 29 (48%) 60

MANTICORE times out in 7 contracts, and does not report any
reentrancy vulnerabilities.

The results indicate that state-of-the-art tools exhibit poor
effectiveness in detecting reentrancy vulnerabilities exploited
by flash loan attacks. Moreover, we find that in addition to
two true positives, SLITHER warns about some low-impact
reentrancy occurrences in the contract functions, which are
coincided with the causes of the attack. Therefore, we would
emphasize the importance of static analysis tools in reporting
reentrancy vulnerabilities, and developers need to take such
information seriously.

6.2 Price Oracle Manipulation (C5)
6.2.1 Experiment Setup

Evaluated Tools. There are five existing tools related to
price oracle manipulation as mentioned in § 2-C. However,
FLASHSYN, PROMUTATOR and DEFIRANGER identifies price
oracle manipulation based on historical transaction information
rather than the specific contract code. Moreover, OVER aims to
analyze the range of price deviations that a DeFi protocol
can tolerate, but it lacks the automated oracles to detect
vulnerabilities. Therefore, we select only DEFITAINTER, a
static taint analysis tool at the bytecode level, to detect price
oracle manipulation and evaluate its accuracy in flash loan
attack incidents in our dataset.

Dataset. According to § 4-B, we collect 66 incidents caused
by price oracle manipulation. For each victim contract, DE-
FITAINTER requires an input that includes chain ID, logic
contract address, proxy contract address, function signature,
and block number [62]. We utilize the TENDERLY [63], a
full-stack infrastructure for Ethereum development, to analyze
the attack transactions of incidents to obtain the required
information. However, there are 6 incidents occurring on some
non-Ethereum-compatible blockchain platforms (e.g., Celo [64]
and Solana [65]) that are not supported by TENDERLY, resulting
in the information of victim contracts cannot be obtained.
Hence, the evaluation dataset consists the contracts related to
the remaining 60 incidents.

Experimental Environment. Although the DEFITAINTER is
available on GitHub as open-source [62], it cannot be directly
executed successfully. We reproduce DEFITAINTER by rolling
back to the dependency of the previous version of GIGA-
HORSE [66], and utilizing the modified “gigahorse.py” and
“price_manipulation_analysis.dl” files provided by the authors.
Finally, DEFITAINTER is successfully executed based on the
decompiler GIGAHORSE (#055ffb6) and Python (v3.8.18).

6.2.2 Experiment Results

Table V shows the evaluation result on price oracle manip-
ulation detection of DEFITAINTER. DEFITAINTER correctly

1

2
3

4

function getTokenAmountForToken (address tokenSrc, address
tokenDest, uint256 tokenAmount) public view returns (
uint) {
(usePriceFeeds && address (priceFeed) !=address(0)) {
(uint256 rate, uint256 precision) = priceFeed.queryRate
(tokenSrc, tokenDest);
return tokenAmount * rate / precision; }ooo.. }

if

Figure 9: Example of limitation 1.

identified 29% of incidents in collateralized lending category,
and 56% of incidents in collateralized redemption category,
leading to an overall correct detection rate of 48% for incidents
of price oracle manipulation.

DEFITAINTER performs better in detecting collateralized
redemption protocols than collateralized lending protocols,
suggesting that detecting flash loan attacks on collateralized
lending protocols is more challenging than on collateralized
redemption protocols because the former utilizes price oracles
in complex control conditions, whereas the latter only employs
them for calculations. Furthermore, there are a total of 31 (52%)
false negatives, indicating that the generality of DEFITAINTER
needs to be improved. The specific reasons are detailed below.

6.2.3 Limitations of DEFITAINTER.

The workflow of DEFITAINTER comprises four steps: (1)
bytecode collection, (2) taint source identification, (3) taint
propagation analysis and (4) taint sink detection. We thoroughly
analyze the reasons for the 31 false negatives (52%) of
DEFITAINTER to facilitate further improvement. In total, we
identify the following three limitations, resulting in 4 (13%),
18 (58%), and 9 (29%) false negatives, respectively.

Limitation 1: Incorrect external call address recovery.
In the process of bytecode collection, since DeFi protocols
are composed of multiple contracts, DEFITAINTER gathers
the bytecode of external call contracts involved in the input
contract under test to build a comprehensive cross-contract
analysis. To automatically identify the address of external call
contracts, DEFITAINTER designs a recovery function, which
primarily addresses three scenarios: (1) the target address is
hardcoded within the code, (2) the target address is stored
in a global variable, and (3) the target address is stored in a
specific slot, which pertains to the issue of storage conflicts
in proxy contracts. In the first scenario, the address can be
easily identified directly in the code, whereas the address must
be retrieved from the storage slots in the latter two scenarios.
Note that the global variables are stored in storage slots with
offsets, which do not exist in the third scenario. However, when
analyzing the bytecode, DEFITAINTER mistakenly recognizes
the second scenario as the third scenario, leading to issues
when retrieving target addresses.

For example, Figure 9 shows the simplified vulnerable code
exploited in the Nimbus Finance attack incident [67]. In detail,
the function get TokenAmountForToken contains an external
call to the global variable priceFeed (line 3). However,
DEFITAINTER disregards its offsets in storage, leading to
incorrect address retrieval.

Limitation 2: Hard-coded rules for taint source and sink.

1
2
3

1

2
3

function _mint (address account, uint256 amount)internal({
_totalSupply = _totalSupply.add(amount);
_balances[account] = _balances[account].add (amount);}

Figure 10: Example of limitation 2.

function sell (bool max)
amountReturnedLP) ({
uint256 amountArray = balanceOf (msg.sender);
amountReturnedLP = _sell (amountArray); }

public returns (uint256

Figure 11: Example of limitation 3.

DEFITAINTER designates external calls with specific function
signatures, such as the function used to transfer cryptocurrency,
as taint sources and taint sinks. However, due to the diversity in
DeFi protocol implementations, functions achieving the same
functionality might be defined with different function names.
These different names result in distinct function signatures,
making hard-coded methods incomplete for analysis.

For example, Figure 10 shows the simplified vulnerable code
exploited in the xToken Finance attack incident [68]. In detail,
the _mint function is called to issue tokens to users by
increasing the user’s token balance, which is similar to the
transfer function that conforms to the ERC20 standard. How-
ever, DEFITAINTER hardcodes the signature of the transfer
function(“Ox4e6ec247) as taint sink, resulting in the failure
to recognize the _mint function.

Limitation 3: Lack of cross-function call analysis within
a contract. When identifying taint sources, DEFITAINTER
only accounts for external calls that cross contracts, neglecting
internal cross-function calls. DEFITAINTER defines the return
values of specific external calls as taint sources. However, at
the bytecode level, cross-function calls are implemented by
the JuMp opcode rather than a function signature, leading to
the overlook of cross-function calls. Besides, the potential
modification of a tainted global variable across functions is
not adequately considered.

For example, Figure 11 shows the simplified vulnerable code
exploited in the Array Finance attack incident [69]. In detail, the
balanceOf function (line 2) is called the basis for determining
the amount of tokens to transfer. This code pattern aligns with
the detection rules that are used in DEFITAINTER, but because
the function is internal, DEFITAINTER fails to recognize it as
a taint source.

Answer to RQ3: Existing tools exhibit poor effectiveness
in detecting reentrancy vulnerabilities (C1), suggesting
that their simplistic oracles are inadequate for handling
complicate DeFi protocols. DEFITAINTER identifies only
48% price oracle manipulations (C5), suggesting a lack
of generality.

7. DISCUSSION
7.1 Threats to Validity

Threats to internal validity arise from possible human errors
in interpreting the DeFi project code and classifying bugs,
possibly overlooking some categories. To mitigate this, at least
two authors reviewed each error. Moreover, in our experimental

study, the dataset exclusively includes vulnerable cases, since
the majority of victim DeFi protocols are abandoned without
any subsequent remediation. Threats to external validity arise
from inaccuracies in online reports. We addressed this by
cross-verifying information from blockchain security analysis
team blogs, post-attack analyzes by targeted DeFi projects, and
open-source blockchain code.

7.2 Challenges in Defending Against FLAs.

Flash loan attacks typically exploit vulnerable financial mech-
anisms associated with the market or vulnerabilities in smart
contract code. Mitigating financial market risks depends on
developers’ extensive experience and profound understanding
of the principles underlying financial mechanisms. The security
of smart contracts is commonly guaranteed by manual audits by
reputable security companies [70] or state-of-the-art automated
security analysis tools.

However, the code-based vulnerabilities exploited by flash loan
attacks presents three significant challenges to the design and
implementation of automatic tools. (1) The vulnerabilities are
hard to define. For example, the distinction between legitimate
arbitrage caused by price oracle manipulation and attack is
blurred, as protocols susceptible to arbitrage may not neces-
sarily suffer from attacks. (2) Flash loan attacks often target
DeFi protocols, which involve interactions between multiple
contracts. Hence, automatically collecting the complete code
of the analysis target becomes challenging, greatly impacting
the effectiveness of the tools. (3) There is no simple general
code pattern for vulnerability symptoms, even for the same
type of attack, due to the involvement of complex fund flows
that necessitate consideration. In particular, the funds consist
of various types of tokens with different implementations.

8. CONCLUSION

This paper empirically studied 155 real-world incidents of flash
loan attacks, and classified them into five categories based
on their root causes. Among them, incidents exploiting code-
based vulnerabilities represent the highest proportion (74%),
causing 98% of asset losses. Subsequently, we demonstrate
the symptoms of the code-based vulnerabilities and abstract
attack models of the entire process of flash loan attacks to
facilitate the development of future automatic analysis tools.
Finally, we evaluate the effectiveness of existing tools. SLITHER
outperforms MYTHRIL and MANTICORE in detecting 22% of
reentrancy vulnerabilities. DEFITAINTER achieves a detection
accuracy of only 48% for price oracle manipulation. We
summarize three limitations of it that need improvement.

ACKNOWLEDGMENT

This work was supported in part by the National Natural
Science Foundation of China under Grant 61972373, in part by
the Anhui Provincial Department of Science and Technology
under Grant 202103a05020009, the Basic Research Program
of Jiangsu Province under Grant BK20201192.

REFERENCES

[1] E. Foundation, “Solidity programming language,” https:
/ldocs.soliditylang.org/en/stable/, 2024.

[2] S. Werner, D. Perez, L. Gudgeon, A. Klages-Mundt,
D. Harz, and W. Knottenbelt, “Sok: Decentralized finance
(defi),” in Proceedings of the 4th ACM Conference on
Advances in Financial Technologies, 2022, pp. 30—46.

[3] SlowMist., “Slowmist hacked,” https://hacked.slowmist.
io/, 2024.

[4] K. Qin, L. Zhou, B. Livshits, and A. Gervais, “Attacking
the defi ecosystem with flash loans for fun and profit,” in
International conference on financial cryptography and
data security. Springer, 2021, pp. 3-32.

[51 S. Wu, D. Wang, J. He, Y. Zhou, L. Wu, X. Yuan,
Q. He, and K. Ren, “Defiranger: Detecting price ma-
nipulation attacks on defi applications,” arXiv preprint
arXiv:2104.15068, 2021.

[6] S.-H. Wang, C.-C. Wu, Y.-C. Liang, L.-H. Hsieh, and
H.-C. Hsiao, “Promutator: Detecting vulnerable price
oracles in defi by mutated transactions,” in 2021 IEEE
European Symposium on Security and Privacy Workshops
(EuroS&PW). 1EEE, 2021, pp. 380-385.

[7]1 Q. Kong, J. Chen, Y. Wang, Z. Jiang, and Z. Zheng,
“Defitainter: Detecting price manipulation vulnerabilities
in defi protocols,” in Proceedings of the 32nd ACM
SIGSOFT International Symposium on Software Testing
and Analysis, 2023, pp. 1144-1156.

[8] Q. Xia, Z. Huang, W. Dou, Y. Zhang, F. Zhang, G. Liang,
and C. Zuo, “Detecting flash loan based attacks in
ethereum,” in 2023 IEEE 43rd International Conference
on Distributed Computing Systems (ICDCS). 1EEE, 2023,
pp. 154-165.

[9] Z. Chen, S. M. Beillahi, and F. Long, “Flashsyn: Flash

loan attack synthesis via counter example driven ap-

proximation,” in Proceedings of the IEEE/ACM 46th

International Conference on Software Engineering, 2024,

pp. 1-13.

X. Deng, S. M. Beillahi, C. Minwalla, H. Du, A. Veneris,

and F. Long, “Safeguarding defi smart contracts against

oracle deviations,” in Proceedings of the IEEE/ACM 46th

International Conference on Software Engineering, 2024,

pp- 1-12.

M. Bartoletti, J. H.-y. Chiang, and A. L. Lafuente, “Sok:

lending pools in decentralized finance,” in Financial

Cryptography and Data Security. FC 2021 International

Workshops: CoDecFin, DeFi, VOTING, and WTSC, Virtual

Event, March 5, 2021, Revised Selected Papers 25.

Springer, 2021, pp. 553-578.

J. Feist, G. Grieco, and A. Groce, “Slither: a

static analysis framework for smart contracts,” in

Proceedings of the 2nd International Workshop on

Emerging Trends in Software Engineering for Blockchain,

WETSEB@ICSE 2019, Montreal, QC, Canada, May 27,

2019. 1EEE / ACM, 2019, pp. 8-15. [Online]. Available:

https://doi.org/10.1109/WETSEB.2019.00008

[10]

[11]

[12]

[13] Consensys., “Mythril.” https://github.com/Consensys/
mythril, 2024.
M. Mossberg, F. Manzano, E. Hennenfent, A. Groce,
G. Grieco, J. Feist, T. Brunson, and A. Dinaburg, “Man-
ticore: A user-friendly symbolic execution framework for
binaries and smart contracts,” in 2019 34th IEEE/ACM
International Conference on Automated Software Engi-
neering (ASE). 1EEE, 2019, pp. 1186-1189.
[15] Web3rekt, “Blockchain hacks and scams,” https://www.
web3rekt.com/, 2024.
[16] DeFiHackLabs, “Defi hacks reproduce - foundry,” https:
//github.com/SunWeb3Sec/DeFiHackLabs, 2024.
SmartContractSecurity, “Reentrancy,” https://swcregistry.
i0o/docs/SWC-107/, 2024.
flainsight, “flainsight,” https://github.com/FLAInsight/
FLAInsight, 2024.
D. Wang, S. Wu, Z. Lin, L. Wu, X. Yuan, Y. Zhou,
H. Wang, and K. Ren, “Towards a first step to understand
flash loan and its applications in defi ecosystem,” in
Proceedings of the Ninth International Workshop on
Security in Blockchain and Cloud Computing, 2021, pp.
23-28.
S. Malamud and M. Rostek, “Decentralized exchange,”
American Economic Review, vol. 107, no. 11, pp. 3320—
3362, 2017.
B. Blog, “Liquidity pools explained: Simplifying defi
for beginners,” https://bitpay.com/blog/liquidity-pools-
explained/, 2024.
Unchained, “Yield farming: What is it and how does
it work?” https://www.coindesk.com/learn/yield-farming-
what-is-it-and-how-does-it-work/, 2024.
[23] U. d, “Yield farming: What is it and how does it
work?” https://www.antiersolutions.com/understanding-
deflationary-tokens-and-their-benefits/, 2024.
A. Beniiche, “A study of blockchain oracles,” arXiv
preprint arXiv:2004.07140, 2020.
foundry rs, “foundry,” https://github.com/foundry-rs/
foundry, 2024.
D. Spencer, Card sorting: Designing usable categories.
Rosenfeld Media, 2009.
M. Huang, J. Chen, Z. Jiang, and Z. Zheng, ‘“Revealing
hidden threats: An empirical study of library misuse in
smart contracts,” in Proceedings of the 46th IEEE/ACM
International Conference on Software Engineering, 2024,
pp. 1-12.
J. Chen, “Finding ethereum smart contracts security issues
by comparing history versions,” in Proceedings of the
35th IEEE/ACM International Conference on Automated
Software Engineering, 2020, pp. 1382—-1384.
T. Durieux, J. F. Ferreira, R. Abreu, and P. Cruz, “Empiri-
cal review of automated analysis tools on 47,587 ethereum
smart contracts,” in Proceedings of the ACM/IEEE 42nd
International conference on software engineering, 2020,
pp- 530-541.

(14]

(17]
(18]

(19]

[20]

(21]

(22]

[24]
[25]
[26]

[27]

(28]

[29]

[30] Z. Zhang, B. Zhang, W. Xu, and Z. Lin, “Demystifying
exploitable bugs in smart contracts,” in 2023 I[EEE/ACM
45th International Conference on Software Engineering
(ICSE). 1EEE, 2023, pp. 615-627.

[31] investopedia, “Understanding accounting errors, how to
detect and prevent them,” https://www.investopedia.com/
terms/a/accounting-error.asp, 2024.

[32] Extropy.lO, “Rounding errors: Minor but major
hacks,” https://extropy-io.medium.com/rounding-errors-
minor-but-major-hacks-445dc9996ecc, 2024.

[33] Akshata, “Access control vulnerabilities in smart
contracts,” https://metaschool.so/articles/access-control-
vulnerabilities-in-smart-contracts/, 2024.

[34] E. Finance, “Euler,” https://mp.weixin.qq.com/s/
wP3rpdhsO0X3ppoxttOLdIQ, 2024.

[35] W. Finance, “Wusdmaster,” https://medium.com/
@Knownsec_Blockchain_Lab/wault-finance-flash-loan-
security-incident-analysis-368a2elebb5b, 2024.

[36] BlackGold, “Pancakepair,” https://medium.com/@d.e.b.
t./bgld-the-black-gold-project-explained-f99eb9d1650e,
2024.

[37] NereusFinance, “Cauldronv2,” https://medium.com/
nereus-protocol/post-mortem-flash-loan-exploit-in-
single-nxusd-market-343fa32f0c6, 2024.

[38] Chainlink, “Decentralized data feeds,” https://data.chain.
link/, 2024.

[39] Wikipedia, “Time-weighted average price,” https://en.
wikipedia.org/wiki/Time-weighted_average_price, 2024.

[40] J. Fernando, “Volume-weighted average price,” https://
www.investopedia.com/terms/v/vwap.asp, 2024.

[41] G. Finance, “Grimboostvault,” https://learnblockchain.cn/
article/3628, 2024.

[42] G. Wagner, “Eip-1470,” https://eips.ethereum.org/EIPS/
eip-1470, 2021, online; accessed 12 October 2021.

[43] P. Tsankov, A. Dan, D. Drachsler-Cohen, A. Gervais,
F. Buenzli, and M. Vechev, “Securify: Practical security
analysis of smart contracts,” in Proceedings of the 2018
ACM SIGSAC conference on computer and communica-
tions security, 2018, pp. 67-82.

[44] C. Gao, W. Yang, J. Ye, Y. Xue, and J. Sun, “sguard+:
Machine learning guided rule-based automated vulnera-
bility repair on smart contracts.” ACM Trans. Softw. Eng.
Methodol., feb 2024, just Accepted.

[45] Aave, “Aave liquidity protocol,” https://aave.com/, 2025.

[46] Nereus, “Nereus finance,” https://www.nereus.finance/,
2025.

[47] uniswap, “Uniswap protocol,” https://uniswap.org/, 2024.

[48] investopedia, “Long position vs. short position: What’s
the difference?” https://www.investopedia.com/ask/
answers/1003 14/whats-difference-between-long-and-
short-position-market.asp, 2024.

[49] ValueDeFi, “Multistablesvault,” https://peckshield.
medium.com/value-defi-incident-root-cause-analysis-
fbab71faf373, 2024.

[50] A. Project, “Anchstakepool,” https://www.web3rekt.com/
hacksandscams/anch-project-1008, 2024.

[51] C. Y. M. Chee, S. Pal, L. Pan, and R. Doss, “An analysis
of important factors affecting the success of blockchain
smart contract security vulnerability scanning tools,” in
Proceedings of the 5th ACM International Symposium on
Blockchain and Secure Critical Infrastructure, 2023, pp.
105-113.

[52] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor,
“Making smart contracts smarter,” in Proceedings of
the 2016 ACM SIGSAC conference on computer and
communications security, 2016, pp. 254-269.

[53] G. Grieco, W. Song, A. Cygan, J. Feist, and A. Groce,

“Echidna: effective, usable, and fast fuzzing for smart

contracts,” in Proceedings of the 29th ACM SIGSOFT

international symposium on software testing and analysis,

2020, pp. 557-560.

XSURGE, “Surgetoken,” https://beosin.medium.com/a-

sweet-blow-fb0a5e08657d, 2024.

Paraluni, “Masterchef,” https://www.halborn.com/blog/

post/explained- the-paraluni-hack-march-2022, 2024.

[56] R. Protocol, “Cetherdelegate,” https://medium.com/

blockapex/rari-capital-hack-analysis-poc-3f0328e555d9,

2024.

OUSD, “Vaultcore,” https://medium.com/@matthewliu/

urgent-ousd-has-hacked-and-there-has-been-a-loss-of-

funds-7b8c4a7d534c, 2024.

Cream, “Amp,” https://medium.com/cream-finance/c-r-

e-a-m-finance-post-mortem-amp-exploit-6ceb20a630c5,

2024.

S. Finance, “Vault,” https://www.immunebytes.com/blog/

sturdy-finance-hack-june- 12-2023-detailed-analysis/,

2024.

Libertify, “Libertivault,” https://neptunemutual.com/blog/

taking-a-closer-look-at-libertify-exploit/, 2024.

E. Farm, “Efvault,” https://neptunemutual.com/blog/how-

was-the-earning-farm-exploited/, 2024.

defitainter, ““defitainter,” https://github.com/kongqp/

DeFiTainter, 2024.

tenderly, “dashboard tenderly,” https://dashboard.tenderly.

co/explorer, 2024.

[64] Celo, “Celo,” https://celo.org/, 2024.

[65] Solana, “Solana,” https://solana.com/, 2024.

[66] N. Grech, “gigahorse-toolchain,”
//github.com/nevillegrech/gigahors-toolchain/tree/
055ffb6c776a74055¢c2b85e9b4b52d8850142616, 2024.

[67] N. Finance, “Stakingrewardfixedapy,” https:

//neptunemutual.com/blog/nimbus- platform-flash-

loan-attack/, 2024.

xToken Finance, “xsnx,” https://rekt.news/xtoken-rekt/,

2024.

A. Finance, “Arrayfinance,” https://blocksecteam.medium.

com/the-analysis-of-the-array-finance-security-incident-

bcab555326¢1, 2024.

Etherscan, “Smart contracts audit and security,’

https://etherscan.io/directory/Smart_Contracts/Smart_

Contracts_Audit_And_Security, 2024.

[54]

[55]

[57]

(58]

[59]

[60]
[61]
[62]

[63]

https:

[68]

[69]

[70]

